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Abstract. The methods of Lie algebras are used to construct and solve a generalisation of 
the X Y  model. 

1. Introduction 

In this paper we apply the methods of Lie algebras to solve and generalise the X Y  
model (Lieb et a1 1961, Katsura 1962). The methods employed originate in the 
spectrum generating algebras of particle physics-which are non-symmetry algebras 
of the Hamiltonian, and provide elegant solutions for quantum statistical problems 
(Solomon 1971, 1974). We briefly outline the approach we adopt in the present 
context. 

In equilibrium statistical mechanics the thermodynamic behaviour of a system, 
whose Hamiltonian is H,  follows from evaluation of the partition function 

Q = Tr[exp(-PH)], 

where p is the inverse of the absolute temperature times Boltzmann's constant. 
Classically, the trace may be interpreted as the sum over all the allowed configurations 
of the system; in quantum mechanics, as the usual Hilbert space trace. 

In our algebraic treatment we shall consider H to be an element of a suitable Lie 
algebra of rank 1. This means that one can find a Cartan basis for the algebra which 
includes the I mutually commuting elements, h l ,  h 2 , .  . . , hl. The solution of the 
problem is obtained by finding an automorphism of the algebra, implemented by U 
say, such that 

I 

H- UHU-' = 1 Amh, 
m = l  

where the Am are known scalars (elements of the underlying field). Since in principle 
the spectra of the h ,  are known, such an automorphism effects diagonalisation and 
clearly leaves the partition function Q unchanged. 

Therefore the strategy to be adopted is in three parts: 

( a )  Determine a suitable Lie algebra which is to generate the spectrum of H. The 
Hamiltonian H will be an element of the algebra in some (usually large) 
representation. 
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Choose a small-dimensional, faithful representation in which to implement 
the automorphism (1.1). 
Now return to the original representation, in which (1 .1)  remains true and in 
particular the values of the scalars A,,, are unchanged, to evaluate the spec- 
trum of H and the partition function. 

In the case of the X Y  model, on a cyclic lattice of N points, the application of the 
three-part strategy gives: 

( a )  The Hamiltonian is an element of a (2N x 2N)-dimensional representation of 
S0(2N)OS0(2N) .  This is a rank 2N algebra. 

( b )  We implement the automorphism (1.1) in the faithful (4N x 4N)-dimensional 
representation, determining the values of the 2N constants Am. 

(c) We return to the 2 N  x 2N representation to evaluate the partition function. 

The reason that the solution of the X Y  model is so readily obtained, in spite of the 
seemingly cumbersome nature of the machinery outlined above (nobody can 
diagonalize even a 4N x 4 N  matrix in general!) is that the translation1 invariance of 
physically interesting models means that in these cases the underlying algebra is a 
much smaller one, and effectively reduces the computation in all such cases to the 
diagonalization of a small (in our case, 2 x 2) matrix. The generalized X Y  model we 
treat is in fact the most general translationally invariant model consistent with the 
S0(2N)OS0(2N)  algebra of the original X Y  model. 

Since the automorphism (1.1) reduces the computation of the partition function in 
(c) to that of a system of uncoupled spins, to which the model is therefore equivalent 
in an algebraic sense, we now briefly treat such a free spin model. 

2. Free spin model 

Consider the following Hamiltonian, representing a system of N uncoupled spins: 
N 

m = l  
H = -  1 AmZ,,,. 

The Am are positive scalars and 

2, = 1 0 1 0 . .  .@Uz 010.. .O1 

where the matrices occurring in the direct product are all 2 x 2, and cl, which occurs at 
the mth position, is the third of the three Pauli spinors, 

u"=[l 0 1  01 fly = [ p  -(] uz=[' 0 -1 O]. 

The overall negative sign in (2.1) ensures that alignment along the positive z direction 
lowers the energy. 

The partition function 
N 

Q(N P)=Tr(exp m = l  C P A m Z m )  

may be evaluated as a straightforward matrix trace, using the properties of direct 
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products, as 

1635 

N 

m = l  
Q(N, P ) =  n [2 cosh(P~im)l* 

The free energy per particle f is given in the thermodynamic limit by 

1 1 2 =  -Pf= lim -In Q(N,  p )  = - 1 ln[2 cosh(pA(qh)] dc#J 
N - w  N 2.rr 0 

where we replace the discrete valued A, by the continuous function .4(c#J), where 

A(dm) = 11, at 4, = 2irm/N, m = l . 2  , . , . ,  N. 

All quantities of thermodynamic interest may be calculated from f. 

somewhat more general form 
In the model we shall be considering, the Hamiltonian can in fact be rotated to the 

where A; are positive scalars and 

r=Z1Z2...ZN. 
The partition function corresponding to this Hamiltonian may be equally readily 
evaluated, 

Q(N,  p ) =  2N-1(ncosh(PAL)+ncosh(PA,)+n sinh(pA;)-nsinh(PAi)). 

The free energy per particle determined from this partition function will depend on 
the relative magnitudes of A; and A i ;  for example, when A:> A; the first term will 
dominate. 

3. Algebra of the XY model 

We consider a one-dimensional lattice of N sites, labelled 1,  2, . . . , N. The X Y  
model is given by the following Hamiltonian of nearest-neighbour type: 

N 
H1= - 1 (J?"x,x,+l+J~yY,Ym+l). 

m = l  

The notation for X, and Y,,, is analogous to that of Z ,  in the previous section, so that, 
for example, 

[X,, Y,,] = 2iS,,,Z,,. 

We may also include additionally a contribution from an external magnetic field h 
N 

Ho=-h 1 z,. 
m = l  

The X Y  model described by H = Ho+HI is exactly solvable, and although it does not 
exhibit a phase transition in the thermodynamic limit for finite p, its thermodynamic 
behaviour has been extensively studied. Further, the X Y  model is intimately related 
to the solution of the two-dimensional Ising model in transfer matrix form (Suzuki 
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1971); this connection is even more explicit in the case of the generalised model we 
shall describe in the next section, of which the X Y  model is only a special case. 

We now implement part ( a )  of our strategy by determining the spectrum generat- 
ing algebra for the X Y  model. Define the following matrices y r :  

r = 2 , 3 , .  . . , N 
yr = 2 1 2 2  . * . Z,-lX, 

Y N + r  = z1z2 . * . z r - 1  yr 

y1=X1 Y N + l  = y1. 

The matrices y , ( r  = 1 , 2 ,  . . . , 2 N )  then generate a Clifford algebra with anticom- 
mutation relations given by 

{Yn ys} = 26,s. 
The transformation from {Xm, Y,,,, Z m }  to { y r }  is sometimes called the Jordan-Wigner 
transformation. Using the yr we may construct the N(2N - 1 )  matrices L,: 

LrS = -i/4[rr, rSI r , s = l , 2  , . . . ,  2N ( 3 . 3 )  

which close under the commutation relations of the Lie algebra SO(2N) 

[ L r s ,  = i(&LSq - S s p L q  + 6rqLps - 6 s J p r ) .  (3.4) 

(We retain the i in expressions such as (3.3) and (3 .4)  only when we wish to maintain 
the Hermiticity of the operators concerned. The algebras, such as S 0 ( 2 N ) ,  that we 
are interested in are of course real Lie algebras whose defining relations do not 
involve i.) 

From the following expressions, which hold for m = 1, 2 ,  . . . , N - 1 ,  

x m x m + 1  = 2LN+m,m+1 Y m  Ym+l = 2LN+m+l,m z m  = 2Lm,N+nt. 

We see that in the case of the X Y  model with free ends, where the summation in (3.1) 
goes from 1 to N - 1 ,  we may immediately express H as an element of SO(2N). In the 
cyclic case, however, we require the additional terms XNXl  and YNYl and so must 
enlarge the algebra. This is readily done as follows. 

Introduce the matrix y = Z l Z , .  . . ZN. This obeys 
2 

{Y,  Y r } = O  y = 1  [Y ,  Lrsl = 0. 

Then the operators 

L ~ ’ = + ( I   ay)^,^ a = +  

close on the algebra S 0 ( 2 N ) O S 0 ( 2 N )  

[LZ’, L;)] = iSob(SrSL$) - sS&$’ + s,J~”,’- s,J.LJP)). 
This enlarged algebra now contains all the previously required quantities 

L, = L: + L; 

as well as the cyclic terms 

XNXl = 2(L!T2)N-LltZ)N), 
YNYl= 2(L%+l --LL$I+1); 
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and so we may write the X Y  Hamiltonian H = Ho+H1,  equations (3.1) and (3.2), 
explicitly as an element of S0(2N)OS0(2N). This completes part ( a )  of our strategy. 

4. Translational invariance 

The most general element of our S 0 ( 2 N ) O S 0 ( 2 N )  algebra may be written 
2N 

H =  1 1 m L m n  
( a )  

a=* m , n = l  

or, more compactly, 

H = -tr w 3  

with o and 9 defined as blocked 4N X 4N matrices 

where the elements of w *  are real numbers and those of 9 are the matrices .LE), L!;). 
We now impose translational (more precisely, cyclic) invariance by demanding that H 
be invariant under the action of the unitary operator 9 defined by 

Xr+ 1 = BXr9-l Yr + 1 = B Yr9- Zr + 1 BZr9- ; 

that is 

H =$H$-'. 

The operator 9 which obeys 9" = 1 and generates a (2N x 2N)-dimensional represen- 
tation of the cyclic subgroup CN of S 0 ( 2 N ) O S 0 ( 2 N ) ,  is implemented on 9 by 

$2I?&-l = (92G),, (96 = 1) 

where 9 is the 4N X 4N (numerical) matrix defined by 

9=[ l@oA(+)  1 0 ] 
1 0 A(-) 

and tilde denotes matrix transpose. 
The cyclic N x N matrix A(+), and the anticyclic A(-) ,  are given by 

A ( - ) = [  -1 :] ' 0  

0 1  0 1  

A(+) = 

and obey 
tonian (4.1) leads to the equation 

1 & = a l ( a  = 2).  Imposing the condition (4.2) on the Hamil- 

(1 0 A'"')-'w'")(1 @ A'")) = w(a) (4.3) 
whose general solution, with U(" )  antisymmetric, is 
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where the JP’ are arbitrary, real 2 x 2  matrices. This set of coefficients w in the 
Hamiltonian (4.1) therefore gives the most general translationally invariant model 
consistent with the S 0 ( 2 N ) O S 0 ( 2 N )  algebra. 

The subscript r in the expression (4.3) for w ( a )  refers to an interaction which is 
(y+l)-body and of range r. For example, taking J :  = J ; ,  we may rewrite the 
Hamiltonian (4.1) as 

with 

and 
N 

Hr = - (J:“XmZXm+r + JT’YmZYm+r + J:’XmZYm+r + J:”YmZXm+r) 
m = l  

r = l , 2  , . . . ,  N. 

where we have put 

and terms like XmZXm+, are shorthand for XmZm+l . . . Zm+r-lXm+r. In this form we 
see that we may recover the X Y  model, by choosing all the coefficients except h, J f ”  
and J:’ as zero; as well as other generalisations such as that of Suzuki (J:’ = J y x  = 0) 
(Suzuki 1971) and Dzyaloshinsky (h, J f ” ,  JYy, JT’ = -J$ non-zero) (Siskens et a1 
1974). However, the form (4.1) and (4.3) is most suitable for our purposes, and we 
now implement part ( b )  of our general strategy, by choosing a convenient faithful 
representation of S 0 ( 2 N ) O S 0 ( 2 N )  in which to implement the automorphism (1.1). 

5. Diagonalisation of the Hamiltonian 

A convenient representation of S 0 ( 2 N ) O S 0 ( 2 N )  in which to implement the 
automorphism (1.1) is the standard representation of the rotation algebra 

obtained by setting 

Srs = ers - esr r, s = 1 , 2 , .  . . ,2N 

where ers is the 2N x 2N matrix defined by 

e:’’ = STS: m, n = 1 , 2 , .  . . ,2N. 

We may use this representation for both the ‘+’ and *-’ algebras to obtain the 
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representation for H'"):  

as a 2 N  x 2 N  matrix. 

orthogonal matrix) which sends U(") to the canonical form 
Since the U(") are antisymmetric, there exists an automorphism (rotation by an 

where the diagonal matrix .A(')= diag{AY', . . . , Ag'} may be chosen to have positive 
entries which are readily computed (appendix). (This amounts to choosing the com- 
muting elements h ,  of the Cartan basis (1.1) proportional to Sm,N+m in this represen- 
tation.) 

Since the automorphism 
N 

& ( a ) -  

m = l  

holds in the 2N-dimensional representation, it also holds in the 2N-dimensional 
(Hermitian, S - iL'"') representation 

N 
( a )  (c l )  H ( " ) e  1 -211, L,, , ,N+~ 

m = l  

so that the original Hamiltonian (4.1) takes the form (2.2) 
N 

H H - 1 [:( 1 - y)iILZm + $( 1 + y)>l;Zm] 
m = l  

of the free spin model, and the partition function may be evaluated immediately, 
completing part (c) of our strategy. The expression for the free energy is given in 
appendix 1 (equations (A.5) and (A.6)). 

6. Conclusion 

We have described a generalisation of the spin-4 X Y  model which is exactly solvable, 
and the most general within the context of the S 0 ( 2 N ) O S 0 ( 2 N )  algebra of the usual 
X Y  model and translational invariance. The expression derived for the free energy 
(equations (A. 1) and (A.2)) may be chosen to have particularly simple, closed forms; 
for in the infinite-range limit the coupling constants in (A.2) can be taken as the 
Fourier coefficients of (fairly arbitrary) functions. 

The Hamiltonian considered, though of doubtful direct physical interest, has a 
useful interpretation as the associated Hamiltonian of the two-dimensional king 
problem; that is, an operator commuting with the transfer matrix. We show this in 
appendix 2,  where we also derive the Onsager solution. Although we have only 
considered translationally invariant models in this paper it is a straightforward matter 
to proceed to the non-invariant case. For example, if the Hamiltonian is invariant 
under v-translations, where v is some positive integer dividing N, 

9''H$-" = H 
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we obtain the general solution by solving the modification of (4.3) 
(1 0 A("))-'u(Q'(l @ A'"')' 

Appendix 1 

We determine the elements A$) of the canonical form of 
N-1 

1. @ ( a )  = ( J Y )  0 .-jr 0 A(")r 
r = O  

Assume that the eigenvalue equation for U ( " )  is of the form 

w(")(u o e(")) = ip(u o e'"') 

where e'"' is an eigenvector of A'"' with eigenvalue A'"' 
~ ( " ' ~ ( a )  = A 

By substituting the expression (A.l)  for U ( " )  in (A.2) we obtain 

so that p is the cigenvalue corresponding to the eigenvector U of the 2 x 2 Hermitian 
matrix M'"): 

N- 1 M(")= -i c ( J r ) A ( " ) r -  ' ( 0 )  ( " ) - r  J ,  A 
r = O  

Rewriting M(") in terms of the four real numbers m f )  
3 

&I =O 
M'"'= c mpa, 

the two eigenvalues of M'"' are immediately given by 

('4.4) 

p =m:'+(ml + m :a)2 Y2 (A.5) 
and 

Since the eigenvalues of ,U(") occur in conjugate pairs, the N positive values A:' are 
enumerated by taking the modulus of (AS)  corresponding to each eigenvalue A :) of 

(a)2 + + m y ) 2 ) 1 / 2  (m 1 p = m g )  - 

A'"'. 

A'") m = exp(i4ln"') m = 1 , 2 , .  . . , N 

with 

4:) = 2mr/N,  4;) = (2m + 1)IrIN. 

Defining the energy function A("(4) by 

A(")(4,,,) = A:) 

we have explicitly 

A(")(+) = ImF)(4)+ (m ?)(4)* + m ? ) ( d ) 2  + mY'(4)2)''21 
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with the functions m $ ' ( d )  given in terms of the matrix elements of J!"' by 
N - 1  

mg) (4 )=  1 ( J Y ) l l  + J ( a ) 2 2  r ) sin(r4) 
,= 1 

N - 1  

I= 1 
m p ) ( 4 ) =  1 (JY)12  + J ( a ) 2 1  r 1 s M 4 )  

N - 1  
m P ' ( 4 )  = 1 (Jj"'12 - J?'" ) cos(r4) 

r = O  

N - 1  m y ) ( 4 ) =  1 ( J ? ) 1 1  - J ( a ) 2 2  
r 1 sin(r4). 

r = l  

The magnetic field term occurs explicitly as the r = 0 component of J:"' (4): 

h =-$(m:+'(o)+m$-)(o)). 

In the case J :  = J ;  we have AL(4)  = A i ( 4 )  as N + CO, and so the free energy may be 
written 

1 2rr 
-Pf = g lo l n P  cosh(PM4))I d 4  ( A 4  

as in B 2, with 

N 4 ) =  C ar sin(r4) 
;D 

r = l  

2 w  2 1/2 +[( r = l  f b,sin(r4))'+( r = l  f crcos(r4)-h) +( r = l  1 drsin(r4)) ] (A.7) 

writing 

a,  = J:" - J:' 

cr = J:" + J:' 

br = J:' - J:" 

dr = J:' + J:".  

All the thermodynamic quantities may be calculated from (A.6) in the usual way. 

Appendix 2 

We exhibit the relation of the generalised X Y  model to the two-dimensional Ising 
model, and deduce the Suzuki equivalence result (Suzuki 1971). We follow 
Kasteleyn's treatment of the Ising problem below (Kasteleyn 1975). 

The Hamiltonian for a two-dimensional Ising model on a M X N lattice may be 
written 

where the Pauli spinor ~ i k  is that associated with a spin having the values +1 or -1 at 
the ( j ,  k) site. The partition function 

Q = Tr[exp(-PH)] 
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is a classical sum over all 2MN allowed configurations, and is conventionally evaluated 
by introducing the transfer matrix 

T ( W ( ' ) ,  p(k+ l ) )  = exp(-EL(p'k', p(k+l ) ) ) .  

Here one denotes the state of row k by 

(p lk ,  p 2 k r .  * 9 p N k )  
@ ( k )  = 

and the 'layer' energy EL(p(k ) ,  P ( ~ + ' ) )  gives the contribution to the total energy from 
the mutual interactions in row k,  and the interaction between rows k and k + 1. With 
this notation the partition function Q may be rewritten as 

Q = . , . T ( p ( ' ) , p ( 2 ) ) T ( p ( 2 ) , p ( 3 ) ) .  . . T(p'" ' ,  p( ' ) )  
r(1) r ( 2 )  r ( n )  

(imposing cyclic boundary conditions so that row M interacts with row 1 )  or, more 
elegantly, 

Q = T r T M  

where we consider T ( P ( ~ ) ,  p ( k + l ) )  as the (p"), P ( ~ + ' ) )  element of a 2N X 2 N  matrix T, 
the transfer matrix. 

For the Ising Hamiltonian (A.8) the layer energy may be written 
N 

E ~ ( c L ,  P ' ) = -  C ( J ~ c L ~ P ~ + ~ + J z c L ~ c L : )  
j = l  

and the transfer matrix elements become 

where we have written K 1  = PJ1, Kz = PJ2. 

In our notation we may write 
N N 

TI  = n (e". + e-KzXj)  T2 = exp( 1 K,ZjZj+l) 
1 = 1  j =  1 

where we have extended the definition of T2 to 

We may thus rewrite the transfer matrix T as 
N N 

j =  1 1 = 1  
T = T2T1= C N  exp(K1 ZjZj+l)  exp(KT ,E X,) 

re-expressing TI  as an exponential, with the identification 

C cosh K T = eKz C sinh KT = e-K2. 

We may reorient the (Xi, Yi, Zi) axes-by a l 7 i  SO(3)i rotation-and so rewrite the 
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transfer matrix in its final form 

as given, for example, by Kasteleyn. 
Noting that T is a product of exponents of elements of the Lie algebra treated in 

this paper, we infer that it is an element of the associated Lie group. We may 
diagonalise T by using the representation of 5 for which we have essentially 

(In this rather succinct notation, suggested by appendix 1, the terms on the right must 
be read as pairs of 2 N  x 2 N  matrices; we have suppressed the pairs as each element 
has the same form. Further, the symbol A stands for the A'"' matrix of § 4. Alter- 
natively, A may be treated as an indeterminate to be replaced by the eigenvalues of A' 
and A- in the final calculation. In both cases we shall suppress the superscript 
( U )  = i.) 

We therefore have in the representation 

? = CN( f" '+  ?.'e'> 

where 

C1C2 - A  -lS1S2 -i(C1S2 - A -'S1C2)] 
= [i(ClS2-ASlC2) CIC~-ASISZ 

putting 

C1= cosh(2K1) 

S1 = sinh(2K1), 

C2 = cosh(2K; ) 

SZ = sinh(2KT ). 

Note that we may rewrite ?(a) in the form of (A.4): 
3 

f i = O  

?'a'= pall 

with 

r6"' = ClCZ--SlS2 cos q, t'p' = - s ~ c ~  sin q, 

( '4.9) 

t:"' = C1Sz-S1C2 cos q, t:"' = is1s2 sin 4 

where A = exp(iq) (again suppressing the supercript ( a )  which A and q should carry). 
In this form we see that the transfer matrix is just a (complex) generalised X Y  

operator. We may recover a real X Y  Hamiltonian by an imaginary rotation of -2iK; 
about the ay (=4 axis, so that 

3 

f i = O  

?(a)++ c f:(a'all 

t :  = ( C ~ C ~ - S I S Z  cos 4, -S1 sin q, ClS2-S1C2 cos 4,O). 
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This rotated transfer matrix commutes with the conventional XY Hamiltonian 

H x y  =Ho+H1 

rig? = 2m :’U,, 

for which 

“Q) ,, = (0, sin[q(JTx - J 1 y y ) ] ,  cos[q(Jfx + J r Y ) ] - h ,  0) 

if the corresponding three-vectors (t:“’, t:”’, t ? ’ )  and (my’, m:”’, m?’) are parallel; 
that is, if Jfx:JFy: h = exp(2K2):exp(-2K2): 2 coth(2K1) which is the Suzuki 
equivalence result. 

We may also readily diagonalise the transfer matrix T in this representation. 
Diagonalisation corresponds to a rotation of T: 

In our representation this corresponds to 

exp( 2i[ CL -@I) 
where p is a diagonal N x N matrix, p = diag(pl, p2, . . . , p N )  and there is actually a 
suppressed index (a)  corresponding to the pair of matrices on the right. Equating 
traces, using the explicit expression of given in (A.9), we obtain 

cosh(2p)= C1C2-S1S2 COS 4 

for the eigenvalues pi.  Returning to the original 2 N  x 2N formulation of (A.lO) we see 
that the maximum eigenvalue of T-the one of physical interest-is given by 
C exp pi ,  where N N  

cosh(2pi) = cosh(2K1) cosh(2KT ) - sinh(2K1) sinh(2K2) cos(2ri,”), 

Onsager’s classic result. 
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